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Abstract-The study aims to use the predictive value of oxygen 
saturation for the determination of hypoxemia and acidosis by 
local information during intranatal fetal monitoring. For this 
purpose, we employ the measurement of umbilical artery (UA) 
and umbilical vein (UV) oxygen saturation and pH in an 
unselected population, and calculate preductal oxygen saturation 
at birth. The study analyzes umbilical cord blood samples of 
1537 live-born singleton neonates. Oxygen saturation, pH and 
base excess were measured. Preductal oxygen saturation was 
computed with an empirical equation. Acidosis was defined as 
below the value of 7.09 for UA pH or �10.50 mmol/L for base 
excess. Normality condition of the data is searched by 
Kolmogorov-Smirnov test. Then, the importance of individual 
indices is determined by using principal component analysis 
(PCA) method. A local decision technique, k-nearest neighbor 
(k-NN) method is employed for the indication of adverse 
conditions. Finally, RBF is used to combine the local information 
regions. It is verified that the base excess in UA is the most 
informative component and the local oxygen saturation 
information is valuable for the indication of adverse conditions. 
KeyWords:  Fetal intranatal evaluation, pulse oximetry, k-NN, 
RBF 

 
I. INTRODUCTION 

 

Clinical measurements of oxygen saturation of hemoglobin 
in arteries and veins have been dominated by the pulse 
oximetry, a noninvasive technology [1-6]. The spectroscopic 
measurement derives the information that hemoglobin and 
oxy-hemoglobin absorb light to varying degrees as a function 
of wavelength. Pulse oximeters distinguish the difference 
between optical absorption by blood and other anatomical 
constituents by observation that pulsating blood induces 
dynamics into absorption characteristics of well-perfused 
peripheral side. These dynamics are called 
photoplethysmograph (PPG) or blood volume velocity (BVP) 
and are used obtain measurements independent of optical 
properties of the skin, bone and nonpulsatile tissue. Pulse 
oximetry is well established as an early indicator of hypoxia 
during generally intensive care, recovery and anesthesia.  

 
On the other hand, in fetal care, persistent fetal hypoxemia 

can lead to acidosis and neurologic injury and current 

methods to detect fetal compromise are indirect and 
nonspecific. Theoretically, direct continous noninvasive 
measurement of fetal oxygenation is desirable to improve 
intrapartum fetal assesment and, the specificity and detecting 
fetal compromise. The development of reflectance pulse 
oximetry has made it possible to measure fetal oxygen 
saturation during labor [1]. Intrapartal reflectance pulse 
oximetry detects pulsatile signals to measure oxygen 
saturation in capillary area, which is supplied by preductal 
vessel of fetuses in the vertex position. In the literature, the 
limits of oxygen saturation for critical fetal acidosis vary 
greatly. In this study, acidosis was defined as below the 
value of 7.09 for Umbilical artery (UA) pH or �10.50 
mmol/L for base excess.  

 
In this study, we investigate the normality of the measured 

components, then decide the most informative components 
and finally obtain an indication of the adverse conditions by 
using local information content during intranatal monitoring. 
Section 2 presents theoretical contents and application to the 
intranatal case. Section 3 discusses experiments and results. 
Section 4 concludes the paper. 

 
II. METHODS 

 
Local information content of a feature space is valuable 

for various applications . As a specific case, we consider the 
fetal oxygen saturation during labor and make use of 
accurate measurement of oxygen by reflectance pulse 
oximetry for noninvasive monitoring. 

 
The study analyzes umbilical cord blood samples of 1537 

live-born singleton neonates. Oxygen saturation was 
measurement by spectrophotometry, pH and base excess 
were measured by a pH and blood gas analyzer. Preductal 
oxygen saturation was calculated with an empirical equation. 
Acidosis was defined as below the value of 7.09 for UA pH 
or �10.50 mmol/L for base excess.  

 

A. Gaussian Distribution 
 
We first check the normality condition of fetal oxygen 

saturation. Normality condition of the parameters, the PH 
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value and oxygen saturation of UA and UV is investigated 
by Kolmogorov-Smirnov test. Figure 1 and 2 show the 
histograms and how these histograms match to gaussian 

distribution. It is observed that for a given population of the 
measurements we obtain an acceptable gaussian distribution 
with a reasonable tolerance level. 
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B Principal Component Analysis (PCA) 
 
We then apply factor analysis and try to find out the most 

informative oxygen saturation component of the intrapartum 
data. For this purpose, principal component analysis (PCA) 
[7] is used to find the most important and independent 
components from original data. Normally in PCA, a 
covariance matrix of the original data is created, and 
eigenvectors and eigenvalues of that matrix are computed. 

The original covariance matrix, ( )( )[ ]TxxE µµ −−=�  

with x as the data set and )(xE=µ  as the mathematical 
expectation of the sample set, in practical cases is replaced by 

an estimated 
∧
Σ :  

( )( )Txx
n

µµ −−=Σ �
∧ 1

  
 

where xi s are the sample vectors and

∧
µ  is the estimated 

mean of the sample set. PCA uses eigenvalues nλλλ ,..., 21  

of 
∧
Σ and the eigenvectors u1,u2,...,un of 

∧
Σ  by choosing 

several of those eigenvectors that ensure preserving as much 
information as possible. This can be determined by the size of 
corresponding eigenvalues. The resulting reconstruction error 
or information loss is  
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(D is the diagonal matrix of the eigenvalues). The mean-

sequare reconstruction error, R2, is achieved by accumulating 

those eigenvalues, nλ
, belonging to the abandoned 
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eigenvectors, ui, i=M+1, ... N. The ignored information or R2 
becomes minimum if the smallest eigenvalues are 
accumulated. 

 
The indices related to intranatal monitoring are 1:ThPre, 

2:SaO2 in UV 3: pH in UV, 4:base excess in UV, 5:SaO2 in 
UA, 6: pH in UA, 7:base excess in UA. The PCA orders the 
eigenvalues and confirms our expectation that base excess in 
UA, oxygen saturation (SaO2), pH turns out to be the most 
informative components (Fig 3). In fact, it is known that we 
obtain much of the information from the base excess in UA 
during labor.  

 

C. k-NN Algorithm 

 

Finally, we employ local k-nearest neighbor (k-NN) [7-10] 
for the indication of adverse intranatal conditions. The 
concept of locality is related to the location of information 
that is extracted for class decision. The technique is in fact an 
approximation of Bayes Decision Theory in a local 
environment [7] and The process can further be extended to 
weighted voting and gaussian weighted voting (Parzen 
window). In k-NN rule, the class decision of unknown sample 
is based on the majority of the nearest k samples. In other 
way, a local voting process decides the class wi of unknown 
sample x with the highest vote: 

  
If  ki = max {k1,�.,kL}   then    x ∈ wi  

k1+�.+kL = k 
 

where ki is the number of neighbors belong to wi (i=1,�.L) 
class among the k nearest neighbor. In practice to recognize 
pattern x, k minimum distance samples are computed among 
all the samples. Various norms of distance can be used: 
minkowski-norm-based distances, e.g. euclidian, mahalonobis 
and entropy or kullback-leibler distance.  

 
Physical sense of closeness to a feature motivates us to use 

a local decision technique to investigate the adverse 
conditions during intranatal fetal oxygen monitoring. We 
assume that fetuses with asidosis create a cluster in the vector 
space. During the monitoring, this fact helps to make a 
decision of wellness. 

 
 
D. Radial Basis Function (RBF) Net 

The RBF net [8-10] output produces an overall global 
decision by using the mean and covariance parameters of 
local basis functions. Physically, a single hidden layer 
network whose output nodes form a linear combination of 
the basis functions. A typical gaussian kernel function b(.) is:  

[ ] MiuxCuxxb ii
T

ii ,...,2,1,)()(exp)( 1 =−−−= −
 

and the output layer node equation for the RBF:  

)(xib
M

i
iwy �=  

where, ui is mean vector, Ci is diagonal covariance matrix 
and wi is the weight value of the connection of the local 
kernel. As a result, the net, by its design structure, is able to 
produce a global decision out of gaussians that summarize 
the local information.  

Further, the RBF net in nature becomes suitable for 
introducing the fuzziness to decision process [11]. For 
example, a gaussian basis function can be used to compute 
the local grade of fuzziness for the specific sample at the 
center. 

III. EXPERIMENTS 
 
In this study, 1537 live-born singleton neonates were under 

observation. Oxygen saturation, pH and base excess values 
were measured, then preductal oxygen saturation were 
empirically found. Limit values of acidosis were below the 
value of 7.09 for UA pH or �10.50 mmol/L for base excess.  

 
First, normality condition of the data is searched by 

Kolmogorov-Smirnov test and the normality of data is 
verified by a small error. Then, the importance of the 
information of individual factors is determined by using 
principal component analysis (PCA) method. The indices 
were 1:ThPre, 2:SaO2 in UV 3: pH in UV, 4:base excess in 
UV, 5:SaO2 in UA, 6: pH in UA, 7:base excess in UA. The 
PCA shows (Fig.3) that oxygen saturation (SaO2), pH and 
specially base excess in UA reveals the most important 
information during the intranatal fetal evaluation. 

 
Finally, the classifiers k-NN and RBF are employed for the 

indication of adverse conditions. k-NN, in terms of simplicity 
and performance, is proven to be a good choice as an 
indicator of wellness condition of fetuses during labor (Table 
1).  The RBF introduces a 97% sensitivity and 93% specivity.  

 
IV. CONCLUSIONS AND DISCUSSION 

 
A new data processing method based on local information 

content is employed for pulse oximetry possesing the 
information related to oxygen saturation of hemoglobin for 
intrapartum fetal evaluation. As an intelligent data processing 
approach, hypoxia conditions of fetus are monitored and 
classified.  

 
It is verified that the base excess in UA, oxygen saturation 

(SaO2), pH measurements are the most informative factors 
and the local information of oxygen saturation extracted by k-

(3) 

(4) 

(5) 



NN helps to give an indication of adverse conditions during 
intranatal monitoring. 

 
The study will continue to extend the leading the 

interpretation errors of pulse oximetry, the clinical alarm 
conditions and the other techniques to reveal local 
information.  

 
 

 Sensiti
vity 

Specifi
city 

PPT PN
T 

k-
NN 

92% 94% 95% 90
% 

RBF 97% 93% 94% 96
% 

 
Table 1:Results of experiments 

 

 
Figure 3:The result of principal component analysis 

(1:ThPre, 2:SaO2 in UV 3: pH in UV, 4:base excess in UV, 
5:SaO2 in UA, 6: pH in UA, 7:base excess in UA) 
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